skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knoll, Lesley B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is reducing winter ice cover on lakes; yet, the full societal and environmental consequences of this ice loss are poorly understood. The socioeconomic implications of declining ice include diminished access to ice-based cultural activities, safety concerns in traversing ice, changes in fisheries, increases in shoreline erosion, and declines in water storage. Longer ice-free seasons allow more time and capacity for water to warm, threatening water quality and biodiversity. Food webs likely will reorganize, with constrained availability of ice-associated and cold-water niches, and ice loss will affect the nature, magnitude, and timing of greenhouse gas emissions. Examining these rapidly emerging changes will generate more-complete models of lake dynamics, and transdisciplinary collaborations will facilitate translation to effective management and sustainability. 
    more » « less
  2. Abstract The quality of lake ice is of uppermost importance for ice safety and under-ice ecology, but its temporal and spatial variability is largely unknown. Here we conducted a coordinated lake ice quality sampling campaign across the Northern Hemisphere during one of the warmest winters since 1880 and show that lake ice during 2020/2021 commonly consisted of unstable white ice, at times contributing up to 100% to the total ice thickness. We observed that white ice increased over the winter season, becoming thickest and constituting the largest proportion of the ice layer towards the end of the ice cover season when fatal winter drownings occur most often and light limits the growth and reproduction of primary producers. We attribute the dominance of white ice before ice-off to air temperatures varying around the freezing point, a condition which occurs more frequently during warmer winters. Thus, under continued global warming, the prevalence of white ice is likely to substantially increase during the critical period before ice-off, for which we adjusted commonly used equations for human ice safety and light transmittance through ice. 
    more » « less
  3. Abstract In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract. Outgassing of carbon dioxide (CO2) from freshwater ecosystems comprises 12 %–25 % of the total carbon flux from soils and bedrock. This CO2 is largely derived from both biodegradation and photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and soils in the watersheds of lakes. In spite of the significance of these two processes in regulating rates of CO2 outgassing, their relative importance remains poorly understood in lake ecosystems. In this study, we used groundwater from the watersheds of one subtropical and three temperate lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm events. We assessed the relative importance of biodegradation and photodegradation in oxidizing DOC to CO2. We measured changes in DOC concentration, colored dissolved organic carbon (specificultraviolet absorbance – SUVA320; spectral slope ratio – Sr), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term experiments from May–August 2016. In all lakes, photodegradationled to larger changes in DOC and DIC concentrations and opticalcharacteristics than biodegradation. A descriptive discriminant analysisshowed that, in brown-water lakes, photodegradation led to the largestdeclines in DOC concentration. In these brown-water systems, ∼ 30 % of the DOC was processed by sunlight, and a minimum of 1 % was photomineralized. In addition to documenting the importance of photodegradation in lakes, these results also highlight how lakes in the future may respond to changes in DOC inputs. 
    more » « less